Ranking Queries on Uncertain Data (Volume 42)
Hua, Ming; Pei, Jian
Uncertain data is inherent in many important applications, such as environmental surveillance, market analysis, and quantitative economics research. Due to the importance of those applications and rapidly increasing amounts of uncertain data collected and accumulated, analyzing large collections of uncertain data has become an important task. Ranking queries (also known as top-k queries) are often natural and useful in analyzing uncertain data.
Ranking Queries on Uncertain Data discusses the motivations/applications, challenging problems, the fundamental principles, and the evaluation algorithms of ranking queries on uncertain data. Theoretical and algorithmic results of ranking queries on uncertain data are presented in the last ... Read more
Show LessProduct Details
Reviews for Ranking Queries on Uncertain Data (Volume 42)