×


 x 

Shopping cart
Shai Shalev-Shwartz - Understanding Machine Learning: From Theory to Algorithms - 9781107057135 - V9781107057135
Stock image for illustration purposes only - book cover, edition or condition may vary.

Understanding Machine Learning: From Theory to Algorithms

€ 66.13
FREE Delivery in Ireland
Description for Understanding Machine Learning: From Theory to Algorithms Hardback. Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage. Num Pages: 409 pages, 47 b/w illus. 123 exercises. BIC Classification: UYQM. Category: (U) Tertiary Education (US: College). Dimension: 186 x 261 x 29. Weight in Grams: 912.
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a...
Read more
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.

Product Details

Publisher
Cambridge University Press United Kingdom
Number of pages
400
Format
Hardback
Publication date
2014
Condition
New
Number of Pages
410
Place of Publication
Cambridge, United Kingdom
ISBN
9781107057135
SKU
V9781107057135
Shipping Time
Usually ships in 4 to 8 working days
Ref
99-1

About Shai Shalev-Shwartz
Shai Shalev-Shwartz is an Associate Professor at the School of Computer Science and Engineering at the Hebrew University of Jerusalem, Israel. Shai Ben-David is a Professor in the School of Computer Science at the University of Waterloo, Canada.

Reviews for Understanding Machine Learning: From Theory to Algorithms
'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Schölkopf, Max Planck Institute for Intelligent Systems, Germany 'This is a timely text on the mathematical foundations of machine learning, providing a treatment that is...
Read more
'This elegant book covers both rigorous theory and practical methods of machine learning. This makes it a rather unique resource, ideal for all those who want to understand how to find structure in data.' Bernhard Schölkopf, Max Planck Institute for Intelligent Systems, Germany 'This is a timely text on the mathematical foundations of machine learning, providing a treatment that is both deep and broad, not only rigorous but also with intuition and insight. It presents a wide range of classic, fundamental algorithmic and analysis techniques as well as cutting-edge research directions. This is a great book for anyone interested in the mathematical and computational underpinnings of this important and fascinating field.' Avrim Blum, Carnegie Mellon University 'This text gives a clear and broadly accessible view of the most important ideas in the area of full information decision problems. Written by two key contributors to the theoretical foundations in this area, it covers the range from theoretical foundations to algorithms, at a level appropriate for an advanced undergraduate course.' Peter L. Bartlett, University of California, Berkeley

Goodreads reviews for Understanding Machine Learning: From Theory to Algorithms


Subscribe to our newsletter

News on special offers, signed editions & more!