×


 x 

Shopping cart
John J. Watkins - Across the Board: The Mathematics of Chessboard Problems - 9780691154985 - V9780691154985
Stock image for illustration purposes only - book cover, edition or condition may vary.

Across the Board: The Mathematics of Chessboard Problems

€ 28.42
FREE Delivery in Ireland
Description for Across the Board: The Mathematics of Chessboard Problems Paperback. Focuses on chessboard problems. From the Knight's Tour Problem and Queens Domination to their many variations, this work surveys the well-known problems in this surprisingly fertile area of recreational mathematics. Using visual language of graph theory, it guides the reader to the forefront of research in mathematics. Series: Princeton Puzzlers. Num Pages: 272 pages, 204 line illus. BIC Classification: PDZM; WDMG1. Category: (G) General (US: Trade); (U) Tertiary Education (US: College). Dimension: 212 x 142 x 19. Weight in Grams: 264.
Across the Board is the definitive work on chessboard problems. It is not simply about chess but the chessboard itself--that simple grid of squares so common to games around the world. And, more importantly, the fascinating mathematics behind it. From the Knight's Tour Problem and Queens Domination to their many variations, John Watkins surveys all the well-known problems in this...
Read more
Across the Board is the definitive work on chessboard problems. It is not simply about chess but the chessboard itself--that simple grid of squares so common to games around the world. And, more importantly, the fascinating mathematics behind it. From the Knight's Tour Problem and Queens Domination to their many variations, John Watkins surveys all the well-known problems in this surprisingly fertile area of recreational mathematics. Can a knight follow a path that covers every square once, ending on the starting square? How many queens are needed so that every square is targeted or occupied by one of the queens? Each main topic is treated in depth from its historical conception through to its status today. Many beautiful solutions have emerged for basic chessboard problems since mathematicians first began working on them in earnest over three centuries ago, but such problems, including those involving polyominoes, have now been extended to three-dimensional chessboards and even chessboards on unusual surfaces such as toruses (the equivalent of playing chess on a doughnut) and cylinders. Using the highly visual language of graph theory, Watkins gently guides the reader to the forefront of current research in mathematics. By solving some of the many exercises sprinkled throughout, the reader can share fully in the excitement of discovery. Showing that chess puzzles are the starting point for important mathematical ideas that have resonated for centuries, Across the Board will captivate students and instructors, mathematicians, chess enthusiasts, and puzzle devotees.

Product Details

Format
Paperback
Publication date
2012
Publisher
Princeton University Press
Number of pages
272
Condition
New
Series
Princeton Puzzlers
Number of Pages
272
Place of Publication
New Jersey, United States
ISBN
9780691154985
SKU
V9780691154985
Shipping Time
Usually ships in 7 to 11 working days
Ref
99-1

About John J. Watkins
John J. Watkins is professor emeritus of mathematics at Colorado College. An award-winning teacher, he is the author of Topics in Commutative Ring Theory (Princeton) and coauthor of Graphs: An Introductory Approach.

Reviews for Across the Board: The Mathematics of Chessboard Problems
"This book is extremely well written and is, no doubt, the best exposition of the connection between the chessboard problems and recreational mathematics. The author surveys all the well-known problems about chess and the chessboard... The problems are treated in depth from their beginnings through to their status today."
Mohammed Aassila, MAA Review "Torus-shaped boards, three-dimensional boards, a shape called...
Read more
"This book is extremely well written and is, no doubt, the best exposition of the connection between the chessboard problems and recreational mathematics. The author surveys all the well-known problems about chess and the chessboard... The problems are treated in depth from their beginnings through to their status today."
Mohammed Aassila, MAA Review "Torus-shaped boards, three-dimensional boards, a shape called the Klein bottle
the simple checkerboard pattern proves to be creatively malleable when Watkins puts his mind to his hobbylike subject. Watkins' invitational tone ensures attention from the finite but enthusiastic audience for mathematical recreation."
Booklist "Watkins offers an excellent invitation to serious mathematics."
Choice "I would be happy to recommend this book to you... The book is an easy and entertaining read that shows numerous paths into various branches of discrete mathematics and graph theory."
Paul J. Campbell, Mathematics Magazine "This is not just about chess, but also the three centuries of 'recreational mathematics' that the game has inspired. From simple questions, such as whether it is possible for a knight to land on each square of the board on its path, Watkins wades into graph theory, the mathematics of three-dimensional chess and even chess on a torus."
Nature Physics "This book is stimulating and very well written. It is admirably clear... Definitely the book is highly recommended and is of much interest. This book is, no doubt, the newly best exposition of the interconnection between amusing recreational mathematics and the interesting chessboard problems. I feel sure that it will be of great use both to students of graph theory, geometry, topology and mathematics, in general, and captivate to scholars, instructors, chess enthusiasts, puzzle devotees, and to those intervening in amusing and recreational mathematics."
Francisco Jose Cano Sevilla, European Mathematical Society "A most enjoyable book that will surely offer new and original avenues for problem solvers of all kinds in need of new techniques, approaches or problems to solve."
Robert Bilinski, Crux

Goodreads reviews for Across the Board: The Mathematics of Chessboard Problems


Subscribe to our newsletter

News on special offers, signed editions & more!