
Stock image for illustration purposes only - book cover, edition or condition may vary.
Sensing, Intelligence Motion
Vladimir J. Lumelsky
€ 251.41
FREE Delivery in Ireland
Description for Sensing, Intelligence Motion
Hardcover. Describing techniques for handling motion planning tasks in unstructured environments, Sensing, Intelligence Motion fills the need for one comprehensive reference on the subject. Num Pages: 456 pages, Illustrations. BIC Classification: JMM. Category: (P) Professional & Vocational. Dimension: 238 x 161 x 25. Weight in Grams: 717.
A leap forward in the field of robotics
Until now, most of the advances in robotics have taken place in structured environments. Scientists and engineers have designed highly sophisticated robots, but most are still only able to operate and move in predetermined, planned environments designed specifically for the robots and typically at very high cost. This new book takes robotics to the next level by setting forth the theory and techniques needed to achieve robotic motion in unstructured environments. The ability to move and operate in an arbitrary, unplanned environment will lead to automating a wide range of new robotic tasks, such as patient care, toxic site cleanup, and planetary exploration.
The approach that opens the door for robots to handle unstructured tasks is known as Sensing-Intelligence-Motion (SIM), which draws from research in topology, computational complexity, control theory, and sensing hardware. Using SIM as an underlying foundation, the author's carefully structured presentation is designed to:
* Formulate the challenges of sensor-based motion planning and then build a theoretical foundation for sensor-based motion planning strategies
* Investigate promising algorithmic strategies for mobile robots and robot arm manipulators, in both cases addressing motion planning for the whole robot body
* Compare robot performance to human performance in sensor-based motion planning to gain better insight into the challenges of SIM and help build synergistic human-robot teams for tele-operation tasks. It is both exciting and encouraging to discover that robot performance decisively exceeds human performance in certain tasks requiring spatial reasoning, even when compared to trained operators
* Review sensing hardware that is necessary to realize the SIM paradigm
Some 200 illustrations, graphic sketches, and photos are included to clarify key issues, develop and validate motion planning approaches, and demonstrate full systems in operation.
As the first book fully devoted to robot motion planning in unstructured environments, Sensing, Intelligence, Motion is a must-read for engineers, scientists, and researchers involved in robotics. It will help them migrate robots from highly specialized applications in factories to widespread use in society where autonomous robot motion is needed.
Until now, most of the advances in robotics have taken place in structured environments. Scientists and engineers have designed highly sophisticated robots, but most are still only able to operate and move in predetermined, planned environments designed specifically for the robots and typically at very high cost. This new book takes robotics to the next level by setting forth the theory and techniques needed to achieve robotic motion in unstructured environments. The ability to move and operate in an arbitrary, unplanned environment will lead to automating a wide range of new robotic tasks, such as patient care, toxic site cleanup, and planetary exploration.
The approach that opens the door for robots to handle unstructured tasks is known as Sensing-Intelligence-Motion (SIM), which draws from research in topology, computational complexity, control theory, and sensing hardware. Using SIM as an underlying foundation, the author's carefully structured presentation is designed to:
* Formulate the challenges of sensor-based motion planning and then build a theoretical foundation for sensor-based motion planning strategies
* Investigate promising algorithmic strategies for mobile robots and robot arm manipulators, in both cases addressing motion planning for the whole robot body
* Compare robot performance to human performance in sensor-based motion planning to gain better insight into the challenges of SIM and help build synergistic human-robot teams for tele-operation tasks. It is both exciting and encouraging to discover that robot performance decisively exceeds human performance in certain tasks requiring spatial reasoning, even when compared to trained operators
* Review sensing hardware that is necessary to realize the SIM paradigm
Some 200 illustrations, graphic sketches, and photos are included to clarify key issues, develop and validate motion planning approaches, and demonstrate full systems in operation.
As the first book fully devoted to robot motion planning in unstructured environments, Sensing, Intelligence, Motion is a must-read for engineers, scientists, and researchers involved in robotics. It will help them migrate robots from highly specialized applications in factories to widespread use in society where autonomous robot motion is needed.
Product Details
Format
Hardback
Publication date
2005
Publisher
John Wiley and Sons Ltd United States
Number of pages
456
Condition
New
Number of Pages
456
Place of Publication
, United States
ISBN
9780471707400
SKU
V9780471707400
Shipping Time
Usually ships in 7 to 11 working days
Ref
99-50
About Vladimir J. Lumelsky
VLADIMIR J. LUMELSKY, PhD, is Consolidated Papers Professor of Engineering, University of Wisconsin–Madison. Prior to his current appointment, he held positions with Ford Motor Research Laboratories, General Electric Research Center, and Yale University. Dr. Lumelsky is the author or coauthor of more than 200 scholarly publications.
Reviews for Sensing, Intelligence Motion
"This book represents a very stimulating and personal contribution to the field of algorithmic robotics." (Pragmatics & Cognition) "…a good text for senior undergraduates and graduate students with an interest in robot motion." (Computing Reviews.com, May 25, 2006)