Stochastic Spectral Theory for Selfadjoint Feller Operators
Demuth, Michael; Casteren, Jan A.Van
A beautiful interplay between probability theory (Markov processes, martingale theory) on the one hand and operator and spectral theory on the other yields a uniform treatment of several kinds of Hamiltonians such as the Laplace operator, relativistic Hamiltonian, Laplace-Beltrami operator, and generators of Ornstein-Uhlenbeck processes. For such operators regular and singular perturbations of order zero and their spectral properties are investigated.
A complete treatment of the Feynman-Kac formula is given. The theory is applied to such topics as compactness or trace class properties of differences of Feynman-Kac semigroups, preservation of absolutely continuous and/or essential spectra and completeness of scattering systems.
... Read more
Product Details
Reviews for Stochastic Spectral Theory for Selfadjoint Feller Operators