
Stock image for illustration purposes only - book cover, edition or condition may vary.
Multilevel Modeling in Plain Language
Karen Robson
€ 39.14
FREE Delivery in Ireland
Description for Multilevel Modeling in Plain Language
Paperback. With a real focus on the practical, this book provides students with a step-by-step approach, plenty of real-life examples, and downloadable data and exercises on the accompanying study website to help take the fear and intimidation out of multilevel modeling Num Pages: 160 pages. BIC Classification: GPS; PBT; PBWH. Category: (U) Tertiary Education (US: College). Dimension: 242 x 170. .
Have you been told you need to do multilevel modeling, but you can't get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense? Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.
Product Details
Publisher
SAGE Publications Ltd
Format
Paperback
Publication date
2015
Condition
New
Number of Pages
160
Place of Publication
London, United Kingdom
ISBN
9780857029164
SKU
V9780857029164
Shipping Time
Usually ships in 4 to 8 working days
Ref
99-3
About Karen Robson
Karen Robson is Assistant Professor in the Department and Marketing and Hospitality at Central Michigan University. She holds a BSc (Honsd) in Psychology from Queen's University, and an MA in Psychology, an MBA and PhD from Simon Fraser University. Karen's research investigates consumer innovativeness, including how consumers repurpose or use market offerings in ways not intended by the manufacturer and the intellectual property law implications of this practice. A recipient of the Joseph-Armand Bombardier Doctoral Scholarship, her work has appeared in journals such as MIS Quarterly Executive, Business Horizons, Journal of Marketing Education, Journal of Advertising Research, and Journal of Public Affairs. David Pevalin is Professor in the School of Health and Human Sciences and Dean of Postgraduate Research and Education at the University of Essex. He previously served in the Merchant Navy, the City of London Police and the Royal Hong Kong Police. He studied part time at the University of Hong Kong before graduate studies at the University of Calgary, Canada. He returned to the UK in 1999 as Senior Research Officer at the Institute for Social and Economic Research at the University of Essex and joined his current School in 2003 after obtaining his PhD. He co-authored (with Karen Robson) The Stata Survival Manual (Open University Press), co-edited (with David Rose) The Researcher's Guide to the National Statistics Socio-economic Classification (Sage), and authored research reports for the Department of Work and Pensions and the Health Development Agency. He has published papers in the Journal of Health and Social Behavior, British Journal of Sociology, Lancet, Public Health, and Housing Studies.
Reviews for Multilevel Modeling in Plain Language
I started to read the book with vivid interest because of the subject that too often does not find enough space in books which provide an overview of the most used statistical methods leaving out those who are somewhat a little bit more elaborate. After a while I found that I had read many pages, as a story, in a short time, and, rethinking to the title of the book, I remembered there was a part saying .... In plain language . This is really genuine. The Authors do really introduce the subject in a very friendly way, propose examples which facilitate the reader to better understand and explain the output of Stata. I suggest the book both to students and instructors who want a specific text on this subject. On the one hand, students will be not afraid of formula, considering that the book is centred on the understanding of the subjects, on the other hand, instructors will benefit in reviewing the path of the multilevel analysis very quickly. It is a book for those who have some knowledge of statistic but I think that this aspect is definitely clear to the reader. The book is really complete in all the phases of a multilevel analysis, the plain approach helps the reader to grasp the idea, follow the Stata commands and outputs and, finally, to interpret the findings. I think that the Authors were very skillful in preparing this book and added a very useful resource, in particular, for those who use Stata for their analysis.
Dr. Gabriele Messina
Dr. Gabriele Messina