×


 x 

Shopping cart
Irwin W. Sandberg - Nonlinear Dynamical Systems - 9780471349112 - V9780471349112
Stock image for illustration purposes only - book cover, edition or condition may vary.

Nonlinear Dynamical Systems

€ 245.28
FREE Delivery in Ireland
Description for Nonlinear Dynamical Systems Hardcover. Examining a specialised part of neural networks, with applications in control, signal processing and time series analysis, this title provides an up-to-date treatment of a class of nonlinear dynamical systems using feed forward neural network structures. Series: Adaptive and Learning Systems for Signal Processing, Communications and Control Series. Num Pages: 312 pages, Illustrations. BIC Classification: TJFM; UYQN. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 235 x 166 x 25. Weight in Grams: 604.
The first truly up-to-date look at the theory and capabilities of nonlinear dynamical systems that take the form of feedforward neural network structures
Considered one of the most important types of structures in the study of neural networks and neural-like networks, feedforward networks incorporating dynamical elements have important properties and are of use in many applications. Specializing in experiential knowledge, a neural network stores and expands its knowledge base via strikingly human routes-through a learning process and information storage involving interconnection strengths known as synaptic weights.
In Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, six leading authorities describe recent contributions to the development of an analytical basis for the understanding and use of nonlinear dynamical systems of the feedforward type, especially in the areas of control, signal processing, and time series analysis. Moving from an introductory discussion of the different aspects of feedforward neural networks, the book then addresses:
* Classification problems and the related problem of approximating dynamic nonlinear input-output maps
* The development of robust controllers and filters
* The capability of neural networks to approximate functions and dynamic systems with respect to risk-sensitive error
* Segmenting a time series
It then sheds light on the application of feedforward neural networks to speech processing, summarizing speech-related techniques, and reviewing feedforward neural networks from the viewpoint of fundamental design issues. An up-to-date and authoritative look at the ever-widening technical boundaries and influence of neural networks in dynamical systems, this volume is an indispensable resource for researchers in neural networks and a reference staple for libraries.

Product Details

Format
Hardback
Publication date
2001
Publisher
John Wiley and Sons Ltd United States
Number of pages
312
Condition
New
Series
Adaptive and Learning Systems for Signal Processing, Communications and Control Series
Number of Pages
312
Place of Publication
, United States
ISBN
9780471349112
SKU
V9780471349112
Shipping Time
Usually ships in 7 to 11 working days
Ref
99-50

About Irwin W. Sandberg
IRWIN W. SANDBERG is a chaired professor at the University of Texas at Austin. JAMES T. LO teaches in the Department of Mathematics and Statistics, University of Maryland. CRAIG L. FANCOURT is a member of the Adaptive Image and Signal Processing Group at the Sarnoff Corp. in Princeton, New Jersey. JOSE C. PRINCIPE is BellSouth Professor in the Electrical and Computer Engineering Department at the University of Florida, Gainesville. SHIGERU KATAGIRI leads research on speech and hearing at NTT Communication Science Laboratories, Kyoto, Japan. SIMON HAYKIN teaches at McMaster University in Hamilton, Ontario, Canada. He has authored or coauthored over a dozen Wiley titles.

Reviews for Nonlinear Dynamical Systems
"…an interesting book, useful for researchers in network theory…" (Dynamical Systems Magazine, July 2006)

Goodreads reviews for Nonlinear Dynamical Systems


Subscribe to our newsletter

News on special offers, signed editions & more!