Stock image for illustration purposes only - book cover, edition or condition may vary.
Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices
Peter W. Epperlein
FREE Delivery in Ireland
Description for Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices
Hardcover. This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Num Pages: 522 pages, Illustrations. BIC Classification: TJFD5; TTBL. Category: (P) Professional & Vocational. Dimension: 236 x 161 x 30. Weight in Grams: 780.
This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature.
Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors ... Read moreare discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities.
Further key features include:
- practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues;
- detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application;
- systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers;
- coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program.
Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.
Show Less
Product Details
Publisher
John Wiley & Sons Inc United States
Place of Publication
New York, United States
Shipping Time
Usually ships in 7 to 11 working days
About Peter W. Epperlein
Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), ... Read moreDipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world's first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Show Less
Reviews for Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices
“With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.” (The German Branch of the European Optical Society, 1 October 2013) "This book would be a valuable reference and essential source for researchers and engineers who work on the development of diode laser products. It will ... Read morealso be useful for academics and teachers for educational purposes." (Optics & Photonics News, 25 October 2013) Show Less