Stock image for illustration purposes only - book cover, edition or condition may vary.
Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community
. Ed(S): Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin
FREE Delivery in Ireland
Description for Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community
paperback. This ground-breaking, systematic evaluation of the FGOALS climate change model covers the entire field, from its development to its latest applications. As well as explaining how to run FGOALS, it assesses the future potential of this powerful analytical tool. Editor(s): Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin. Series: Springer Earth System Sciences. Num Pages: 499 pages, 24 black & white illustrations, 152 colour illustrations, biography. BIC Classification: PHVG; RBG; RBK; RBP. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 26. Weight in Grams: 759.
Coupled climate system models are of central importance for climate studies. A new model known as FGOALS ( the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the Sate Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. "Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research ... Read moreCommunity” is the first book to offer systematic evaluations of this model’s performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change. Prof. Tianjun Zhou, Yongqiang Yu, Yimin Liu and Bin Wang work at LASG, the Institute of Atmospheric Physics, Chinese Academy of Sciences, China.
Show Less
Product Details
Publisher
Springer Germany
Series
Springer Earth System Sciences
Place of Publication
Berlin, Germany
Shipping Time
Usually ships in 15 to 20 working days
About . Ed(S): Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin
1. Prof Tianjun Zhou, Prof Yongqiang Yu, Prof. Yimin Liu and Prof. Bin Wang are all senior scientists/modelers, and PhD advisors in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences. They have been devoted to studies on coupled atmosphere-ocean modeling and climate dynamics, numerical ... Read moremodeling of climate change, air-sea interaction and Asian-Australian monsoon predictability for more than 15 years. They are also active in the international model inter-comparison and development activities. Prof. Tianjun Zhou is a lead author of IPCC WG1 AR5 and a member of GEWEX Radiation Panel (GRP), GEWEX/WCRP and Asian-Australian Monsoon Panel (AAMP), CLIVAR/WCRP. Prof. Bin Wang is a member of Working Group on Numerical Experimentation (WGNE)/WCRP. Prof. Tianjun Zhou received his PhD degree from Peking University and did his Post Doc in Laboratoire de Meteorologie Dynamique (LMD), CNRS, France and Institute of Atmospheric Physics, Chinese Academy of Sciences and has been working in LASG/IAP since 2001. He has been a visiting scientist at many world renowned climate research institute including Nansen Environmental and Remote Sensing Center and Geophysical Institute of Bergen University (Norway), National Center for Atmospheric Research (NCAR, USA) and Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology Zurich (ETH, Switzerland). He has published many peer-reviewed papers. Some of his recent publication is as follows: • Sperber K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, T.Zhou,2012: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim Dyn, DOI 10.1007/s00382-012-1607-6 • Feng Lei, and Tianjun ZHOU, 2012: Water Vapor Transport for Summer Precipitation over the Tibetan Plateau: Multi-dataset Analysis,Journal of Geophysical Research,117, D20114, doi:10.1029/2011JD017012 • Man Wenmin, Tianjun Zhou , Johann H. Jungclaus, 2012: Simulation of the East Asian Summer Monsoon during the Last Millennium with the MPI Earth System Model, Journal of Climate, 25(22), 7852-7866. • Yang, J., Q. Bao,X. Wang and T. Zhou, 2012:The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models, Adv. Atm. Sci.,29(3),529-543, DOI: 10.1007/s00376-011-1087-3 • Zhang Lixia, Tianjun Zhou, 2012:The Interannual Variability of Summer Upper-Tropospheric Temperature over East Asia, Journal of Climate, 25, 6539-6553 • Wang Lu, Tim Li, and Tianjun Zhou, 2012: Intraseasonal SST Variability and Air - Sea Interaction over the Kuroshio Extension Region during Boreal Summer, Journal of Climate , 25, 1619-1634 • Wu Bo,Tianjun Zhou, and Tim Li, 2011: Two distinct modes of tropical Indian Ocean precipitation in boreal winter and their impacts on equatorial western Pacific, Journal of Climate,25(3):921-938,DOI:10.1175/JCLI-D-11-00065.1 • Sperber K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, T.Zhou,2012: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century,Clim Dyn,DOI 10.1007/s00382-012-1607-6 • Feng Lei, and Tianjun ZHOU, 2012: Water Vapor Transport for Summer Precipitation over the Tibetan Plateau: Multi-dataset Analysis, Journal of Geophysical Research,117, D20114, doi:10.1029/2011JD017012 • Man Wenmin, Tianjun Zhou , Johann H. Jungclaus, 2012: Simulation of the East Asian Summer Monsoon during the Last Millennium with the MPI Earth System Model, Journal of Climate, 25(22), 7852-7866. • Yang, J., Q. Bao,X. Wang and T. Zhou, 2012:The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models, Adv. Atm. Sci.,29(3),529-543, DOI: 10.1007/s00376-011-1087-3 • Zhang Lixia, Tianjun Zhou,2012:The Interannual Variability of Summer Upper-Tropospheric Temperature over East Asia, Journal of Climate, 25, 6539-6553 • Wang Lu, Tim Li, and Tianjun Zhou, 2012: Intraseasonal SST Variability and Air - Sea Interaction over the Kuroshio Extension Region during Boreal Summer, Journal of Climate , 25, 1619-1634 • Wu Bo,Tianjun Zhou, and Tim Li, 2011: Two distinct modes of tropical Indian Ocean precipitation in boreal winter and their impacts on equatorial western Pacific, Journal of Climate,25(3):921-938,DOI:10.1175/JCLI-D-11-00065.1 2. Dr. Bin Wang, senior scientist of Institute of Atmospheric Physics, Chinese Academy of Sciences, granted by the National Science Fund for Distinguished Young Scholars, principal investigator of key project of the National High-tech R&D Program. He did innovative works in self-development of atmospheric model in China and new approaches to four-dimensional variational data assimilation, and thus was honored some individual reputations, e.g., the Advancement Prize of the Ho Leung Ho Lee Foundation and so on, and won some academic awards, e.g., the first-rate award of PLA Prize for Science and Technology Progress. The case study “Atmospheric Research” he wrote obtained the 21st Century Achievement Award of the 2003 Computerworld Honors. He has been serving as members of the Working Group of Coupled Modeling / World Climate Research Program and Data Assimilation and Observation Strategy Working Group / World Weather Research Program. He published more than 100 SCI papers, which have been cited by other scientists for about 1000 times. Show Less
Reviews for Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community