Developments and Trends in Infinite-Dimensional Lie Theory
. Ed(S): Neeb, Karl-Hermann; Pianzola, Arturo
This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups.
Part (A) is mainly concerned with the structure and representation theory of infinite-dimensional Lie algebras and contains articles on the structure of direct-limit Lie algebras, extended affine Lie algebras and loop algebras, as well as representations of loop algebras and Kac–Moody superalgebras.
The articles in Part (B) examine connections between ... Read more
The analytic representation theory of infinite-dimensional Lie groups is still very much underdeveloped. The articles in Part (C) develop new, promising methods based on heat kernels, multiplicity freeness, Banach–Lie–Poisson spaces, and infinite-dimensional generalizations of reductive Lie groups.
Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.
Show LessProduct Details
Reviews for Developments and Trends in Infinite-Dimensional Lie Theory