Dynamical Systems Method and Applications: Theoretical Developments and Numerical Examples
Alexander G. Ramm
Demonstrates the application of DSM to solve a broad range of operator equations
The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications.
Dynamical Systems Method and Applications begins with a general introduction and then sets forth the scope of DSM in Part ... Read more
-
General nonlinear operator equations
-
Operators satisfying a spectral assumption
-
Newton-type methods without inversion of the derivative
-
Numerical problems arising in applications
-
Stable numerical differentiation
-
Stable solution to ill-conditioned linear algebraic systems
Throughout the chapters, the authors employ the use of figures and tables to help readers grasp and apply new concepts. Numerical examples offer original theoretical results based on the solution of practical problems involving ill-conditioned linear algebraic systems, and stable differentiation of noisy data.
Written by internationally recognized authorities on the topic, Dynamical Systems Method and Applications is an excellent book for courses on numerical analysis, dynamical systems, operator theory, and applied mathematics at the graduate level. The book also serves as a valuable resource for professionals in the fields of mathematics, physics, and engineering.
Show LessProduct Details
About Alexander G. Ramm
Reviews for Dynamical Systems Method and Applications: Theoretical Developments and Numerical Examples