
Stock image for illustration purposes only - book cover, edition or condition may vary.
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)
Joram Lindenstrauss
€ 136.95
FREE Delivery in Ireland
Description for Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)
Paperback. Focuses on the difficult question of existence of Frchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. This book provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. Series: Annals of Mathematics Studies. Num Pages: 440 pages. BIC Classification: PBKF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 233 x 164 x 22. Weight in Grams: 616.
This book makes a significant inroad into the unexpectedly difficult question of existence of Frechet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Frechet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Frechet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics.
Product Details
Format
Paperback
Publication date
2012
Publisher
Princeton University Press
Number of pages
440
Condition
New
Series
Annals of Mathematics Studies
Number of Pages
464
Place of Publication
New Jersey, United States
ISBN
9780691153568
SKU
V9780691153568
Shipping Time
Usually ships in 7 to 11 working days
Ref
99-1
About Joram Lindenstrauss
Joram Lindenstrauss is professor emeritus of mathematics at the Hebrew University of Jerusalem. David Preiss is professor of mathematics at the University of Warwick. Jaroslav Ti er is associate professor of mathematics at Czech Technical University in Prague.
Reviews for Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (AM-179)
"The book is well written
as one would expect from its distinguished authors, including the late Joram Lindestrauss (1936-2012). It contains many fascinating and profound results. It no doubt will become an important resource for anyone who is seriously interested in the differentiability of functions between Banach spaces."
J. Borwein and Liangjin Yao, Mathematical Reviews Clippings "[T]his is a very deep and complete study on the differentiability of Lipschitz mappings between Banach spaces, an unavoidable reference for anyone seriously interested in this topic."
Daniel Azagra, European Mathematical Society "We should be grateful to (the late) Joram Lindenstrauss, David Preiss, and Jaroslav Tiser for providing us with this splendid book which dives into the deepest fields of functional analysis, where the basic but still strange operation called differentiation is investigated. More than a century after Lebesgue, our understanding is not complete. But thanks to the contribution of these three authors, and thanks to this book, we know a fair share of beautiful theorems and challenging problems."
Gilles Godefroy, Bulletin of the American Mathematical Society
as one would expect from its distinguished authors, including the late Joram Lindestrauss (1936-2012). It contains many fascinating and profound results. It no doubt will become an important resource for anyone who is seriously interested in the differentiability of functions between Banach spaces."
J. Borwein and Liangjin Yao, Mathematical Reviews Clippings "[T]his is a very deep and complete study on the differentiability of Lipschitz mappings between Banach spaces, an unavoidable reference for anyone seriously interested in this topic."
Daniel Azagra, European Mathematical Society "We should be grateful to (the late) Joram Lindenstrauss, David Preiss, and Jaroslav Tiser for providing us with this splendid book which dives into the deepest fields of functional analysis, where the basic but still strange operation called differentiation is investigated. More than a century after Lebesgue, our understanding is not complete. But thanks to the contribution of these three authors, and thanks to this book, we know a fair share of beautiful theorems and challenging problems."
Gilles Godefroy, Bulletin of the American Mathematical Society