
Stock image for illustration purposes only - book cover, edition or condition may vary.
Models for Probability and Statistical Inference
James H. Stapleton
€ 225.38
FREE Delivery in Ireland
Description for Models for Probability and Statistical Inference
Hardcover. Serving as a text for a two semester sequence on probability and statistical inference complex Models for Probability and Statistical Inference: Theory and Applications features exercises throughout the book and selected answers (not solutions). Each section is followed by a selection of problems, from simple to more complex. Series: Wiley Series in Probability and Statistics. Num Pages: 464 pages, Illustrations. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 239 x 161 x 28. Weight in Grams: 790.
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers
Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.
Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression.
Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.
Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression.
Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Product Details
Format
Hardback
Publication date
2007
Publisher
John Wiley and Sons Ltd United Kingdom
Number of pages
464
Condition
New
Series
Wiley Series in Probability and Statistics
Number of Pages
464
Place of Publication
, United States
ISBN
9780470073728
SKU
V9780470073728
Shipping Time
Usually ships in 7 to 11 working days
Ref
99-50
About James H. Stapleton
James H. Stapleton, PhD, has recently retired after forty-nine years as professor in the Department of Statistics and Probability at Michigan State University, including eight years as chairperson and almost twenty years as graduate director. Dr. Stapleton is the author of Linear Statistical Models (Wiley), and he received his PhD in mathematical statistics from Purdue University.
Reviews for Models for Probability and Statistical Inference
"The prose throughout the book is clear and well aimed at first-year master's student who is intelligent but not yet statistically sophisticated. Examples are clear and well chosen." (Biometrics, March 2009) "Highly recommended. Graduate students through professionals." (CHOICE, May 2008)