Theory of Elasticity
Aldo Maceri
€ 253.69
FREE Delivery in Ireland
Description for Theory of Elasticity
Paperback. This book provides the analytical tools for calculating stresses and deformations in a strained elastic body. It gives engineers, in a simple form, a clear indication of the necessary fundamental knowledge of the theory of elasticity. Num Pages: 726 pages, biography. BIC Classification: TGMD. Category: (G) General (US: Trade). Dimension: 235 x 155 x 37. Weight in Grams: 1098.
TheTheoryofelasticitystudiesthebehaviorofthosebodiesthatrecovertheiri- tial state when the causes which produce deformations are removed. Its results constitutethefoundationsofthe Theory of structuresandthenareofmaximum importanceforengineers. The Theory of elasticity moves freely within an uni ed mathematical fra- workthatprovidestheanalyticaltoolsforcalculatingstressesanddeformationsin astrainedelasticbody. Alltheelasticproblemscanbeexactlyanalyzedemploying theclassicalMathematicalanalysis,withtheexceptionoftheunilateralproblems forwhichtheemploymentoftheFunctionalanalysisismandatory. TheTheoryofelasticitywasfoundedbythefamousmathematicianCauchyinthe eighteenth-century. Duringitshistoricaldevelopmentthisscienti csectorproposed tothemathematiciansvariousproblemsthathavecontributedorentirelygenerated thedevelopmentofcomplexmathematicaltheories,astheVariationalcalculusand theFiniteelementmethod. Thematteranalyzedinthisbookis -three-dimensional problems (Chap. 1), and particularly the problem of Saint Venant(Chap. 1), -two-dimensionalproblems,aspanels,plates,shells(Chap. 3), -one-dimensionalproblems,asropes,beams,arches(Chap. 4), -thermalstressproblems(Chap. 5), -stabilityproblems(Chap. 6), -anisotropicproblems,thatconstitutethebasictoolfortheanalysisofstructuresin compositematerial(Chap. 7), -nonlinearelasticproblems,as niteelasticityandunilateralproblems(Chap. 8). InthisbookIhaveconstantlykeptinmindthepracticalapplicationoftheth- reticalresults. SoIhavealwaystriedtogivetoengineers,inasimpleform,aclear indicationofthenecessaryfundamentalknowledgeoftheTheoryofelasticity. In thepastsometechniquesofcalculationweredevelopedforparticularelasticpr- lemsthatcannotbeorganizedinmathematicaltheoriesbutareextremelysimpleto apply. Suchtechnicaltheorieshavealwaysfurnishedresultsexperimentallyveri ed v vi Preface withgoodapproximationandthenamongthemIhavepresentedthosethatarestill usefultoolsofveri cationintheStructuraldesign. Throughouttheanalysisoftheelasticproblemsmyconstantfocushasbeento achievethemaximumclarityandbecauseofthisIhavesacri cedvariousbright discussions. Ihavedevelopedthetreatmentofthesubjectsinclassicalway,butto thelightofthemodernMathematicaltheoryoftheelasticityandwithmoreaccented relief to the connections with the Thermodynamics. Just for ... Read more
TheTheoryofelasticitystudiesthebehaviorofthosebodiesthatrecovertheiri- tial state when the causes which produce deformations are removed. Its results constitutethefoundationsofthe Theory of structuresandthenareofmaximum importanceforengineers. The Theory of elasticity moves freely within an uni ed mathematical fra- workthatprovidestheanalyticaltoolsforcalculatingstressesanddeformationsin astrainedelasticbody. Alltheelasticproblemscanbeexactlyanalyzedemploying theclassicalMathematicalanalysis,withtheexceptionoftheunilateralproblems forwhichtheemploymentoftheFunctionalanalysisismandatory. TheTheoryofelasticitywasfoundedbythefamousmathematicianCauchyinthe eighteenth-century. Duringitshistoricaldevelopmentthisscienti csectorproposed tothemathematiciansvariousproblemsthathavecontributedorentirelygenerated thedevelopmentofcomplexmathematicaltheories,astheVariationalcalculusand theFiniteelementmethod. Thematteranalyzedinthisbookis -three-dimensional problems (Chap. 1), and particularly the problem of Saint Venant(Chap. 1), -two-dimensionalproblems,aspanels,plates,shells(Chap. 3), -one-dimensionalproblems,asropes,beams,arches(Chap. 4), -thermalstressproblems(Chap. 5), -stabilityproblems(Chap. 6), -anisotropicproblems,thatconstitutethebasictoolfortheanalysisofstructuresin compositematerial(Chap. 7), -nonlinearelasticproblems,as niteelasticityandunilateralproblems(Chap. 8). InthisbookIhaveconstantlykeptinmindthepracticalapplicationoftheth- reticalresults. SoIhavealwaystriedtogivetoengineers,inasimpleform,aclear indicationofthenecessaryfundamentalknowledgeoftheTheoryofelasticity. In thepastsometechniquesofcalculationweredevelopedforparticularelasticpr- lemsthatcannotbeorganizedinmathematicaltheoriesbutareextremelysimpleto apply. Suchtechnicaltheorieshavealwaysfurnishedresultsexperimentallyveri ed v vi Preface withgoodapproximationandthenamongthemIhavepresentedthosethatarestill usefultoolsofveri cationintheStructuraldesign. Throughouttheanalysisoftheelasticproblemsmyconstantfocushasbeento achievethemaximumclarityandbecauseofthisIhavesacri cedvariousbright discussions. Ihavedevelopedthetreatmentofthesubjectsinclassicalway,butto thelightofthemodernMathematicaltheoryoftheelasticityandwithmoreaccented relief to the connections with the Thermodynamics. Just for ... Read more
Product Details
Format
Paperback
Publication date
2014
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Germany
Number of pages
726
Condition
New
Number of Pages
716
Place of Publication
Berlin, Germany
ISBN
9783642423710
SKU
V9783642423710
Shipping Time
Usually ships in 15 to 20 working days
Ref
99-15
Reviews for Theory of Elasticity